z-logo
open-access-imgOpen Access
Chaotic Pulses for Discrete Reaction Diffusion Systems
Author(s) -
Yasumasa Nishiura,
Daishin Ueyama,
Tatsuo Yanagita
Publication year - 2005
Publication title -
siam journal on applied dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 61
ISSN - 1536-0040
DOI - 10.1137/040608714
Subject(s) - chaotic , bifurcation , pulse (music) , physics , lattice (music) , reaction–diffusion system , coupled map lattice , statistical physics , classical mechanics , nonlinear system , synchronization of chaos , quantum mechanics , control theory (sociology) , computer science , acoustics , control (management) , artificial intelligence , voltage
Existence and dynamics of chaotic pulses on a one-dimensional lattice are discussed. Traveling pulses arise typically in reaction diffusion systems like the FitzHugh-Nagumo equations. Such pulses annihilate when they collide with each other. A new type of traveling pulse has been found recently in many systems where pulses bounce off like elastic balls. We consider the behavior of such a localized pattern on one-dimensional lattice, i.e., an infinite system of ODEs with nearest interaction of diffusive type. Besides the usual standing and traveling pulses, a new type of localized pattern, which moves chaotically on a lattice, is found numerically. Employing the strength of diffusive interaction as a bifurcation parameter, it is found that the route from standing pulse to chaotic pulse is of intermittent type. If two chaotic pulses collide with appropriate timing, they form a periodic oscillating pulse called a molecular pulse. Interaction among many chaotic pulses is also studied numerically.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom