z-logo
open-access-imgOpen Access
Computation of Smallest Eigenvalues using Spectral Schur Complements
Author(s) -
Constantine Bekas,
Yousef Saad
Publication year - 2005
Publication title -
siam journal on scientific computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 147
eISSN - 1095-7197
pISSN - 1064-8275
DOI - 10.1137/040603528
Subject(s) - eigenvalues and eigenvectors , linear subspace , mathematics , domain decomposition methods , context (archaeology) , projection (relational algebra) , krylov subspace , nonlinear system , computation , projection method , algorithm , algebra over a field , pure mathematics , iterative method , dykstra's projection algorithm , finite element method , physics , quantum mechanics , paleontology , biology , thermodynamics
The automated multilevel substructuring method (AMLS) was recently presented as an alternative to well-established methods for computing eigenvalues of large matrices in the context of structural engineering. This technique is based on exploiting a high level of dimensional reduction via domain decomposition and projection methods. This paper takes a purely algebraic look at the method and explains that it can be viewed as a combination of three ingredients: (a) A first order expansion to a nonlinear eigenvalue problem that approximates the restriction of the original eigenproblem on the interface between the subdomains, (b) judicious projections on partial eigenbases that correspond to the interior of the subdomains, (c) recursivity. This viewpoint leads us to explore variants of the method which use Krylov subspaces instead of eigenbases to construct subspaces of approximants. The nonlinear eigenvalue problem viewpoint yields a second order approximation as an enhancement to the first order technique inherent to AMLS. Numerical experiments are reported to validate the approaches presented.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom