Martingales on Jump Processes. II: Applications
Author(s) -
René Boel,
Pravin Varaiya,
Eugene Wong
Publication year - 1975
Publication title -
siam journal on control
Language(s) - English
Resource type - Journals
eISSN - 2469-4231
pISSN - 0036-1402
DOI - 10.1137/0313064
Subject(s) - mathematics , martingale (probability theory) , humanities , point process , mathematical economics , philosophy , statistics
summary:The longitudinal regression model $Z_i^j=m(\theta _0,{\mathbb{X}}_i(T_i^j))+ \varepsilon _i^j,$ where $Z_i^j$ is the $j$th measurement of the $i$th subject at random time $T_i^j$, $m$ is the regression function, ${\mathbb{X}}_i(T_i^j)$ is a predictable covariate process observed at time $T_i^j$ and $\varepsilon _i^j$ is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth $M$-estimator of unknown parameter $\theta _0$
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom