z-logo
open-access-imgOpen Access
Analysis of a Geometrical Multiscale Blood Flow Model Based on the Coupling of ODEs and Hyperbolic PDEs
Author(s) -
Miguel Ángel Fernández,
Vuk Milišić,
Alfio Quarteroni
Publication year - 2005
Publication title -
multiscale modeling and simulation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.037
H-Index - 70
eISSN - 1540-3467
pISSN - 1540-3459
DOI - 10.1137/030602010
Subject(s) - ode , uniqueness , ordinary differential equation , partial differential equation , coupling (piping) , mathematics , flow (mathematics) , mathematical analysis , calculus (dental) , differential equation , geometry , mechanical engineering , engineering , medicine , dentistry
International audienceFor the numerical simulation of the circulatory system, geometrical multiscale models based on the coupling of systems of dierential equations with dierent spatial dimensions are becoming common practice [L. Formaggia et al., Comput. Vis. Sci., 2 (1999), pp. 75-83, A. Quarteroni and A. Veneziani, Multiscale Model. Simul., 1 (2003), pp. 173-195, L. Formaggia et al., Comput. Methods Appl. Mech. Engrg., 191 (2001), pp. 561-582]. In this paper we address the mathematical analysis of a coupled multiscale system involving a zero-dimensional (0D) model, describing the global characteristics of the circulatory system, and a one-dimensional (1D) model giving the pressure propagation along a straight vessel. We provide a local-in-time existence and uniqueness of classical solutions for this coupled problem. To this purpose we reformulate the original problem in a general abstract framework by splitting it into subproblems (the 0D system of ODEs and the 1D hyperbolic system of PDEs) ; then we use xed-point techniques. The abstract result is then applied to the original blood ow case under very realistic hypotheses on the data. This work represents the 1D-0D counterpart of the 3D-0D mathematical analysis reported in [A. Quarteroni and A. Veneziani, Multiscale Model. Simul., 1 (2003), pp. 173-195]

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom