z-logo
open-access-imgOpen Access
On the Structure of Bounded Queries to Arbitrary NP Sets
Author(s) -
Richard Chang
Publication year - 1992
Publication title -
siam journal on computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.533
H-Index - 122
eISSN - 1095-7111
pISSN - 0097-5397
DOI - 10.1137/0221045
Subject(s) - combinatorics , hierarchy , bounded function , mathematics , polynomial hierarchy , time complexity , discrete mathematics , mathematical analysis , economics , market economy
In [Kad87b], Kadin showed that if the Polynomial Hierarchy (PH) has infinitely many levels, then for all $k$, $P^{SAT[k]} \subseteq P^{SAT[k+1]}$. In this paper, we extend Kadin''s technique to show that a proper query hierarchy is not an exclusive property of SAT. In fact, for any $A \in NP \overbrace{low_{3}}$, if PH is infinite, then $P^{A[k]} \subseteq P^{A[k+1]}$. Moreover, for the case of parallel queries, we show that $P^{A||[k+1]}$ is not contained in $P^{SAT||[k]}$. We claim that having a proper query hierarchy is a consequence of the oracle access mechanism and not a result of the ``hardness'''' of a set. To support this claim, we show that assuming PH is infinite, one can construct an intermediate set $B \in NP$ so that $P^{B[k+1]} \subseteq P^{SAT[k]}$. That is, the query hierarchy for $B$ grows as ``tall'''' as the query hierarchy for SAT. In addition, $B$ is intermediate, so it is not ``hard'''' in any sense (e.g., not NP hard under many-one, Turing, or strong nondeterministic reductions). Using these same techniques, we explore some other questions about query hierarchies. For example, we show that is there exists any $A$ such that $P^{A[2]} = P^{SAT[1]}$ then PH collapses to $\Delta^{P}_{3}$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom