z-logo
open-access-imgOpen Access
The Maximum Size of Dynamic Data Structures
Author(s) -
Claire Kenyon-Mathieu,
Jeffrey Scott Vitter
Publication year - 1991
Publication title -
siam journal on computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.533
H-Index - 122
eISSN - 1095-7111
pISSN - 0097-5397
DOI - 10.1137/0220050
Subject(s) - probabilistic logic , asymptotically optimal algorithm , computer science , algorithm , data structure , sequence (biology) , queueing theory , hash function , queue , markov process , mathematics , theoretical computer science , statistics , biology , genetics , programming language , computer network , computer security , artificial intelligence
This paper develops two probabilistic methods that allow the analysis of the maximum data structure size encountered during a sequence of insertions and deletions in data structures such as priority queues, dictionaries, linear lists, and symbol tables, and in sweepline structures for geometry and Very-Large-Scale-Integration (VLSI) applications. The notion of the “maximum” is basic to issues of resource preallocation. The methods here are applied to combinatorial models of file histories and probabilistic models, as well as to a non-Markovian process (algorithm) for processing sweepline information in an efficient way, called “hashing with lazy deletion” (HwLD). Expressions are derived for the expected maximum data structure size that are asymptotically exact, that is, correct up to lower-order terms; in several cases of interest the expected value of the maximum size is asymptotically equal to the maximum expected size. This solves several open problems, including longstanding questions in queueing theo...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom