z-logo
open-access-imgOpen Access
Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields
Author(s) -
Dima Yu. Grigoriev,
Marek Karpiński,
Michael F. Singer
Publication year - 1990
Publication title -
siam journal on computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.533
H-Index - 122
eISSN - 1095-7111
pISSN - 0097-5397
DOI - 10.1137/0219073
Subject(s) - finite field , polynomial , interpolation (computer graphics) , field (mathematics) , mathematics , polynomial interpolation , algorithm , black box , time complexity , discrete mathematics , combinatorics , computer science , pure mathematics , linear interpolation , mathematical analysis , animation , computer graphics (images) , artificial intelligence
The authors consider the problem of reconstructing (i.e., interpolating) a t-sparse multivariate polynomial given a black box which will produce the value of the polynomial for any value of the arguments. It is shown that, if the polynomial has coefficients in a finite field $GF[q]$ and the black box can evaluate the polynomial in the field $GF[q^{\ulcorner 2\log_{q}(nt)+3 \urcorner}]$, where n is the number of variables, then there is an algorithm to interpolate the polynomial in $O(\log^3 (nt))$ boolean parallel time and $O(n^2 t^6 \log^2 nt)$ processors.This algorithm yields the first efficient deterministic polynomial time algorithm (and moreover boolean $NC$-algorithm) for interpolating t-sparse polynomials over finite fields and should be contrasted with the fact that efficient interpolation using a black box that only evaluates the polynomial at points in $GF[q]$ is not possible (cf. [M. Clausen, A. Dress, J. Grabmeier, and M. Karpinski, Theoret. Comput. Sci., 1990, to appear]). This algorithm, tog...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom