z-logo
open-access-imgOpen Access
Fully Dynamic Point Location in a Monotone Subdivision
Author(s) -
Franco P. Preparata,
Roberto Tamassia
Publication year - 1989
Publication title -
siam journal on computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.533
H-Index - 122
eISSN - 1095-7111
pISSN - 0097-5397
DOI - 10.1137/0218056
Subject(s) - subdivision , point location , monotone polygon , combinatorics , point (geometry) , chain (unit) , set (abstract data type) , mathematics , planar , enhanced data rates for gsm evolution , binary logarithm , algorithm , discrete mathematics , computer science , geometry , physics , archaeology , computer graphics (images) , astronomy , history , programming language , telecommunications
In this paper a dynamic technique for locating a point in a monotone planar subdivision, whose current number of vertices is n, is presented. The (complete set of) update operations are insertion of a point on an edge and of a chain of edges between two vertices, and their reverse operations. The data structure uses space O(n). The query time is O(log n), the time for insertion/deletion of a point is O(log n), and the time for insertion/deletion of a chain with k edges is O(log n + k), all worst-case. The technique is conceptually a special case of the chain method of Lee and Preparata and uses the same query algorithm. The emergence of full dynamic capabilities is afforded by a subtle choice of the chain set (separators), which induces a total order on the set of regions of the planar subdivision.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom