The Travelling Salesman Problem and Minimum Matching in the Unit Square
Author(s) -
Kenneth J. Supowit,
Edward M. Reingold,
David A. Plaisted
Publication year - 1983
Publication title -
siam journal on computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.533
H-Index - 122
eISSN - 1095-7111
pISSN - 0097-5397
DOI - 10.1137/0212009
Subject(s) - travelling salesman problem , combinatorics , mathematics , order (exchange) , matching (statistics) , unit (ring theory) , square (algebra) , unit square , heuristic , discrete mathematics , algorithm , mathematical optimization , statistics , geometry , mathematics education , finance , economics
We show that the cost (length) of the shortest traveling salesman tour through n points in the unit square is, in the worst case, $\alpha _{{\text{opt}}}^{{\text{tsp}}} \sqrt n + o(\sqrt n )$, where $1.075 \leqq \alpha _{{\text{opt}}}^{{\text{tsp}}}\leqq 1.414$. The cost of the minimum matching of n points in the unit square is shown to be, in the worst case, $\alpha _{{\text{opt}}}^{{\text{mat}}} \sqrt n + o(\sqrt n )$, where $0.537 \leqq \alpha _{{\text{opt}}}^{{\text{mat}}} \leqq 0.707$. Furthermore, for each of these two problems there is an almost linear time heuristic algorithm whose Worst case cost is, neglecting lower order terms, as low as b Bible.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom