Languages Simultaneously Complete for One-Way and Two-Way Log-Tape Automata
Author(s) -
Juris Hartmanis,
Stephen R. Mahaney
Publication year - 1981
Publication title -
siam journal on computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.533
H-Index - 122
eISSN - 1095-7111
pISSN - 0097-5397
DOI - 10.1137/0210027
Subject(s) - nondeterministic algorithm , discrete mathematics , nondeterministic finite automaton , binary logarithm , automaton , bounded function , combinatorics , computer science , mathematics , computation , deterministic finite automaton , algorithm , automata theory , theoretical computer science , mathematical analysis
In this paper we study languages accepted by nondeterministic $\log n$-tape automata which scan their input only once and relate their computational power to two-way, $\log n$-tape automata. We show that for the one-way, $\log n$-tape automata the nondeterministic model (1-NL) is computationally much more powerful than the deterministic model (1-L); that under one-way, $\log n$-tape reductions there exist natural complete languages for these automata and that the complete languages cannot be sparse. Furthermore, we show that any language complete for nondeterministic one-way $\log n$-tape automata (under 1-L reductions) is also complete for the computationally more powerful nondeterministic two-way, $\log n$-tape reductions. Therefore, for all bounds $T(n),T(n \geq \log n$, the deterministic and nondeterministic $T(n)$-tape bounded computations collapse if the nondeterministic one-way $\log n$-tape computations can be carried out by two-way deterministic $\log n$-tape automata.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom