On the Evaluation of Powers and Monomials
Author(s) -
Nicholas Pippenger
Publication year - 1980
Publication title -
siam journal on computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.533
H-Index - 122
eISSN - 1095-7111
pISSN - 0097-5397
DOI - 10.1137/0209022
Subject(s) - monomial , combinatorics , logarithm , mathematics , exponent , identity (music) , base (topology) , binary logarithm , monomial basis , discrete mathematics , physics , mathematical analysis , philosophy , linguistics , acoustics
Let $y_1 , \cdots ,y_p $ be monomials over the indeterminates $x_1 , \cdots ,x_q $. For every $y = (y_1 , \cdots ,y_p )$ there is some minimum number $L(y)$ of multiplications sufficient to compute $y_1 , \cdots ,y_p $ from $x_1 , \cdots ,x_q $ and the identity 1. Let $L(p,q,N)$ denote the maximum of $L(y)$ over all y for which the exponent of any indeterminate in any monomial is at most N. We show that if $p = (N + 1^{o(q)} )$ and $q = (N + 1^{o(p)} )$, then $L(p,q,N) = \min \{ p,q\} \log N + H/\log H + o(H /\log H)$, where $H = pq\log (N + 1)$ and all logarithms have base 2.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom