Duality Applied to the Complexity of Matrix Multiplication and Other Bilinear Forms
Author(s) -
John E. Hopcroft,
Jean E. Musinski
Publication year - 1973
Publication title -
siam journal on computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.533
H-Index - 122
eISSN - 1095-7111
pISSN - 0097-5397
DOI - 10.1137/0202013
Subject(s) - matrix multiplication , mathematics , noncommutative geometry , bilinear interpolation , multiplication (music) , computation , matrix (chemical analysis) , duality (order theory) , bilinear map , product (mathematics) , dual (grammatical number) , ring (chemistry) , computational complexity theory , discrete mathematics , combinatorics , algebra over a field , pure mathematics , algorithm , art , statistics , physics , materials science , geometry , literature , organic chemistry , quantum mechanics , chemistry , composite material , quantum
The paper considers the complexity of bilinear forms in a noncommutative ring. The dual of a computation is defined and applied to matrix multiplication and other bilinear forms. It is shown that t...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom