z-logo
open-access-imgOpen Access
Lateral extrusion, underplating, and out-of-sequence thrusting within the Himalayan metamorphic core, Kanchenjunga, Nepal
Author(s) -
Tyler Ambrose,
Kyle P. Larson,
Carl Guilmette,
John M. Cottle,
Heather Marie Buckingham,
S.M. Rai
Publication year - 2015
Publication title -
lithosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.737
H-Index - 43
eISSN - 1941-8264
pISSN - 1947-4253
DOI - 10.1130/l437.1
Subject(s) - metamorphism , geology , metamorphic rock , metamorphic core complex , monazite , paleontology , underplating , geochemistry , sequence (biology) , zircon , tectonics , subduction , genetics , biology , extensional definition
Integrated pseudosection modeling and monazite petrochronology of paragneiss from the Kanchenjunga region of northeastern Nepal reveal the presence of cryptic tectonometamorphic discontinuities within the Himalayan metamorphic core. These new data outline a series of thrust-sense structures that juxtapose rocks that generally record a protracted history of early Eocene to latest Oligocene−early Miocene (ca. 41−23 Ma) prograde metamorphism and lateral extrusion against others that typically record short prograde (between 2 and 7 m.y.) and retrograde (between 3 and 6 m.y.) histories variably spanning the middle Oligocene to the middle Miocene (ca. 31−12 Ma). Retrograde metamorphism in the hanging wall of the thrust faults is typically coeval with prograde metamorphism in the footwall, indicating that overthrusting/underthrusting accommodated crustal shortening and drove metamorphic processes. The structures and juxtaposed panels were cut by early Miocene (ca. 20−18 Ma) out-of-sequence thrusting coincident with the previously mapped High Himal thrust. The resulting kinematic model for the evolution of the Himalayan metamorphic core in the Kanchenjunga area demonstrates that the Himalayan metamorphic core was dominated by underplating from at least the Oligocene through to present, and that the internal structure of the exhumed metamorphic core is significantly more complex than has been documented previously.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom