z-logo
open-access-imgOpen Access
U-Pb geochronology of 1.1 Ga diabase in the southwestern United States: Testing models for the origin of a post-Grenville large igneous province
Author(s) -
Ryan M. Bright,
Jeffrey M. Amato,
Steven W. Denyszyn,
Richard E. Ernst
Publication year - 2014
Publication title -
lithosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.737
H-Index - 43
eISSN - 1941-8264
pISSN - 1947-4253
DOI - 10.1130/l335.1
Subject(s) - geochronology , geology , igneous rock , geochemistry , seismology
Late Mesoproterozoic mafic magmatism in the southwestern U.S. diabase province is expressed as diabase dikes, sills, sheets, and flows. Previous radiometric ages range from 1140 Ma to 1040 Ma. We used high-precision thermal ionization mass spectrometry to date baddeleyite in diabase from four localities in Arizona to obtain 206 Pb/ 238 U dates of 1080 ± 2 Ma, 1080 ± 3 Ma, 1088 ± 3 Ma, and 1094 ± 2 Ma. We also obtained single-crystal laser-ablation and ion microprobe ages on zircons from two localities in New Mexico that indicate a wider geographic extent of this diabase province. The samples have SiO 2 ranging from 46.6 to 50.1 wt%, Mg# from 67 to 83, and e Nd ranging from +4.7 to -1.4. A compilation of previously published ages of silicic rocks in the same age range suggests that mantle-derived magma induced crustal anatexis resulting in silicic magmatism, and this bimodal event forms a large igneous province that stretches 1500 km from east to west and 500–1000 km from north to south. Because some of the ca. 1.1 Ga plutonism extends outside the United States into northern Mexico, we suggest renaming this event as the Southwestern Laurentia large igneous province (SWLLIP). Magmatism in the province from 1094 to 1080 Ma occurred largely after the end of the Grenville orogeny. Two models that are not mutually exclusive are proposed: (1) lithospheric delamination following the Grenville collision; and (2) arrival of a mantle plume beneath south-central Laurentia, which spread beneath the lithosphere, with a northward-heading portion causing Keweenawan magmatism (at the boundary with the Superior craton), and a southward-heading portion creating the Southwestern Laurentia large igneous province. Other large igneous provinces have been previously correlated to these events, but the 1075 Ma Warakurna large igneous province in Australia is too young, and the 1110 Ma events in the Amazonian Congo and Kalahari cratons are too old.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom