Influence of dynamic topography on sea level and its rate of change
Author(s) -
Clinton P. Conrad,
Laurent Husson
Publication year - 2009
Publication title -
lithosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.737
H-Index - 43
eISSN - 1941-8264
pISSN - 1947-4253
DOI - 10.1130/l32.1
Subject(s) - downwelling , geology , ocean surface topography , mantle (geology) , hotspot (geology) , mantle convection , upwelling , post glacial rebound , lithosphere , sea level , transition zone , seafloor spreading , geophysics , geodesy , oceanography , paleontology , tectonics
International audienceMantle flow likely supports up to 2 km of long-wavelength topographic relief over Earth's surface. Although the average of this dynamic support must be zero, a net deflection of the ocean basins can change their volume and induce sea-level change. By calculating dynamic topography using a global mantle flow model, we find that continents preferentially conceal depressed topography associated with mantle downwelling, leading to net seafl oor uplift and ~90 ± 20 m of positive sea-level offset. Upwelling mantle fl ow is currently amplifying positive dynamic topography and causing up to 1.0 m/Ma of sea-level rise, depending on mantle viscosity. Continental motions across dynamic topography gradients also affect sea level, but uncertainty over the plate motion reference frame permits sea-level rise or fall by ±0.3 m/Ma, depending on net lithosphere rotation. During a complete Wilson cycle, sea level should fall during supercontinent stability and rise during periods of dispersal as mantle fl ow pushes continents down dynamic topography gradients toward areas of mantle downwelling. We estimate that a maximum of ~1 m/Ma of sea-level rise may have occurred during the most recent continental dispersal. Because this rate is comparable in magnitude to other primary sea-level change mechanisms, dynamic offset of sea level by mantle fl ow should be considered a potentially signifi cant contributor to long-term sea-level change
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom