The stratigraphic expression of decreasing confinement along a deep-water sediment routing system: Outcrop example from southern Chile
Author(s) -
Erin A. L. Pemberton,
Stephen M. Hubbard,
Andrea Fildani,
Brian W. Romans,
Lisa Stright
Publication year - 2016
Publication title -
geosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.879
H-Index - 58
ISSN - 1553-040X
DOI - 10.1130/ges01233.1
Subject(s) - geology , sedimentary depositional environment , turbidity current , foreland basin , turbidite , sedimentary rock , paleontology , outcrop , bedform , sediment , sedimentary structures , submarine , channel (broadcasting) , geomorphology , structural basin , sediment transport , oceanography , engineering , electrical engineering
The products of sediment-laden turbidity currents that traverse areas of decreasing confinement on submarine slopes include erosional and depositional features that record the inception and propagation of deep-sea channels. The cumulative stratigraphic expression and deposits of such transitions, however, are poorly constrained relative to depositional settings dominated by end-member confined (i.e., submarine channel fill) and unconfined (i.e., lobe) deposits. Upper Cretaceous strata of the Magallanes foreland basin in southern Chile are characterized by a variety of stratigraphic architectural elements in close juxtaposition both laterally and vertically, including: (1) low-aspect-ratio channelform bodies attributed to slope channel fills; (2) high-aspect-ratio channelform bodies interpreted as the deposits of weakly confined submarine channels; (3) lenticular sedimentary bodies considered to represent the infill of laterally coalesced scours; (4) discontinuous channelform bodies representing isolated scour fills; and (5) a cross-stratified, positive-relief sedimentary body, which is interpreted to record an upslope-migrating depositional bedform. These elements are interpreted to have formed at a submarine sediment routing system segment characterized by a break in slope, and an accompanying decrease in confinement. The various architectural elements examined are interpreted to record a unique stratigraphic perspective of turbidite channels at various stages of development, from early-stage discontinuous and isolated scour fills to low-aspect-ratio channel units.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom