z-logo
open-access-imgOpen Access
Rampant C→U Hypermutation in the Genomes of SARS-CoV-2 and Other Coronaviruses: Causes and Consequences for Their Short- and Long-Term Evolutionary Trajectories
Author(s) -
Peter Simmonds
Publication year - 2020
Publication title -
msphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.749
H-Index - 39
ISSN - 2379-5042
DOI - 10.1128/msphere.00408-20
Subject(s) - biology , somatic hypermutation , coronavirus , genetics , mutation , apobec , mutation rate , reversion , evolutionary biology , virology , genome , covid-19 , gene , disease , infectious disease (medical specialty) , medicine , b cell , pathology , antibody , phenotype
The wealth of accurately curated sequence data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its long genome, and its low substitution rate provides a relatively blank canvas with which to investigate effects of mutational and editing processes imposed by the host cell. The finding that a large proportion of sequence change in SARS-CoV-2 in the initial months of the pandemic comprised C→U mutations in a host APOBEC-like context provides evidence for a potent host-driven antiviral editing mechanism against coronaviruses more often associated with antiretroviral defense. In evolutionary terms, the contribution of biased, convergent, and context-dependent mutations to sequence change in SARS-CoV-2 is substantial, and these processes are not incorporated by standard models used in molecular epidemiology investigations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here