z-logo
open-access-imgOpen Access
Long-Term Evolution of SARS-CoV-2 in an Immunocompromised Patient with Non-Hodgkin Lymphoma
Author(s) -
Vítor Borges,
Joana Isidro,
Mário Cunha,
Daniela Cochicho,
Luís Martins,
Luís Banha,
Margarida Figueiredo,
Leonor Rebelo,
Maria Céu Trindade,
Sílvia Duarte,
Luı́s Vieira,
Maria João Alves,
Inês Costa,
Raquel Guiomar,
Maria José Santos,
Rita CôrteReal,
André Dias,
Diana Póvoas,
J. F. González Cabo,
Carlos Figueiredo,
Maria José Manata,
Fernando Maltêz,
Maria Gomes da Silva,
João Paulo Gomes
Publication year - 2021
Publication title -
msphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.749
H-Index - 39
ISSN - 2379-5042
DOI - 10.1128/msphere.00244-21
Subject(s) - evasion (ethics) , virology , immune system , pandemic , covid-19 , lymphoma , immune escape , transmission (telecommunications) , biology , genome , immunology , medicine , gene , genetics , infectious disease (medical specialty) , disease , computer science , pathology , telecommunications
Recent studies have shown that persistent SARS-CoV-2 infections in immunocompromised patients can trigger the accumulation of an unusual high number of mutations with potential relevance at both biological and epidemiological levels. Here, we report a case of an immunocompromised patient (non-Hodgkin lymphoma patient under immunosuppressive therapy) with a persistent SARS-CoV-2 infection (marked by intermittent positivity) over at least 6 months. Viral genome sequencing was performed at days 1, 164, and 171 to evaluate SARS-CoV-2 evolution. Among the 15 single-nucleotide polymorphisms (SNPs) (11 leading to amino acid alterations) and 3 deletions accumulated during this long-term infection, four amino acid changes (V3G, S50L, N87S, and A222V) and two deletions (18-30del and 141-144del) occurred in the virus Spike protein. Although no convalescent plasma therapy was administered, some of the detected mutations have been independently reported in other chronically infected individuals, which supports a scenario of convergent adaptive evolution. This study shows that it is of the utmost relevance to monitor the SARS-CoV-2 evolution in immunocompromised individuals, not only to identify novel potentially adaptive mutations, but also to mitigate the risk of introducing “hyper-evolved” variants in the community. IMPORTANCE Tracking the within-patient evolution of SARS-CoV-2 is key to understanding how this pandemic virus shapes its genome toward immune evasion and survival. In the present study, by monitoring a long-term COVID-19 immunocompromised patient, we observed the concurrent emergence of mutations potentially associated with immune evasion and/or enhanced transmission, mostly targeting the SARS-CoV-2 key host-interacting protein and antigen. These findings show that the frequent oscillation in the immune status in immunocompromised individuals can trigger an accelerated virus evolution, thus consolidating this study model as an accelerated pathway to better understand SARS-CoV-2 adaptive traits and anticipate the emergence of variants of concern.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here