z-logo
open-access-imgOpen Access
Transcriptional and posttranscriptional regulation of CSF-1 gene expression in human monocytes.
Author(s) -
J Horiguchi,
E Sariban,
Donald Küfe
Publication year - 1988
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.8.9.3951
Subject(s) - cycloheximide , biology , monocyte , messenger rna , gene expression , microbiology and biotechnology , transcription (linguistics) , regulation of gene expression , gene , protein biosynthesis , immunology , biochemistry , linguistics , philosophy
Regulation of CSF-1 gene expression was investigated in human monocytes. CSF-1 transcripts were at low or undetectable levels in resting monocytes. However, in monocytes treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), CSF-1 mRNA was increased by 3 h and reached maximal levels by 12 h of drug exposure. When nuclear run-on assays were used, CSF-1 gene transcription was also at low or undetectable levels in resting monocytes but was activated after TPA exposure. TPA-treated monocytes exposed to actinomycin D further demonstrated that the half-life of the CSF-1 mRNA is 0.9 h. The results also demonstrated that the protein synthesis inhibitor, cycloheximide (CHX), increases CSF-1 mRNA levels in both resting and TPA-treated monocytes. These effects of CHX occurred in the absence of detectable increases in CSF-1 gene transcription. Moreover, treatment of monocytes with CHX and actinomycin D demonstrated that inhibition of protein synthesis is associated with stabilization of the CSF-1 transcript. Taken together, these findings indicated that CSF-1 gene expression is controlled at both transcriptional and posttranscriptional levels in human monocytes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here