
The Drosophila melanogaster tropomyosin II gene produces multiple proteins by use of alternative tissue-specific promoters and alternative splicing.
Author(s) -
P D Hanke,
Robert V. Storti
Publication year - 1988
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.8.9.3591
Subject(s) - exon , biology , tropomyosin , intron , tandem exon duplication , alternative splicing , promoter , exon trapping , gene isoform , gene , genetics , rna splicing , drosophila melanogaster , microbiology and biotechnology , gene expression , actin , rna
The structure of the Drosophila melanogaster tropomyosin II (TmII) gene has been determined by DNA sequencing of cDNA clones and the genomic DNA coding for the gene. Two overlapping transcriptional units produce at least four different tropomyosin isoforms. A combination of developmentally regulated promoters and alternative splicing produces both muscle and cytoskeletal tropomyosin isoforms. One promoter is a muscle-specific promoter and produces three different tropomyosin isoforms by alternative splicing of the last three 3' exons. The second promoter has the characteristics of a housekeeping promoter and produces a cytoskeletal tropomyosin isoform. Several internal exons along with a final 3' exon are alternatively spliced in the cytoskeletal transcript. The intron-exon boundaries of the TmII gene are identical to the intron-exon boundaries of all vertebrate tropomyosin genes reported, but are very different from the intron-exon boundaries of the D. melanogaster tropomyosin I gene. The TmII gene is the only reported tropomyosin gene that has two promoters and a quadruple alternative splice choice for the final exon. Models for the mechanism of D. melanogaster tropomyosin gene evolution are discussed.