z-logo
open-access-imgOpen Access
In vitro splicing pathways of pre-mRNAs containing multiple intervening sequences?
Author(s) -
K M Lang,
Richard A. Spritz
Publication year - 1987
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.7.10.3428
Subject(s) - rna splicing , biology , in vitro , exon skipping , exon , globin , intron , alternative splicing , splice , messenger rna , microbiology and biotechnology , genetics , rna , gene
We analyzed the in vitro splicing pathways of three multi-intervening-sequence (IVS) pre-mRNAs: human beta-globin, which contains two IVSs (K. M. Lang, V. L. van Santen, and R. A. Spritz, EMBO J. 4:1991-1996, 1985); rat alpha-lactalbumin, which contains three IVSs; and murine interleukin-3, which contains four IVSs. We found that there are highly preferred pathways of IVS removal from these multi-IVS pre-mRNAs in vitro. The three IVSs of rat alpha-lactalbumin pre-mRNA were excised sequentially from 5' to 3'; in most molecules, IVS1 was removed first, followed by IVS2 and finally by IVS3. The splicing pathway of interleukin-3 pre-mRNA in vitro was more complex. The four IVSs were excised in a highly preferred temporal order, but the order was not strictly sequential or directional. In most molecules, IVS1 and IVS4 were removed first, either simultaneously or in rapid succession. Subsequently, IVS2 was excised, followed by IVS3. The observed splicing pathways apparently resulted from differences in lag times and maximum excision rates of the different IVSs. We detected no exon skipping during splicing of these transcripts in vitro. These observations have implication for proposed models of splice site selection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here