Open Access
Residual nitrobenzylthioinosine-resistant nucleoside transport in a transport mutant (AE1) of S49 murine T-lymphoma cells.
Author(s) -
P Plagemann,
Clive Woffendin
Publication year - 1987
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.7.1.160
Subject(s) - nucleoside , thymidine , biology , biochemistry , thymidine kinase , nucleoside analogue , wild type , nucleoside transporter , membrane transport , intracellular , mutant , microbiology and biotechnology , in vitro , virology , membrane , transporter , virus , gene , herpes simplex virus
The uptake of various nucleosides by S49 mouse T-lymphoma cells and that by a single-step nucleoside transport-defective mutant thereof (AE1) were compared. Residual nucleoside entry into AE1 cells occurred via two routes, nonmediated permeation and saturable, non-concentrative transport with broad substrate specificity and a Michaelis-Menten constant approximating that for thymidine transport in wild-type cells. However, in contrast to nucleoside transport in wild-type cells, residual nucleoside transport in AE1 cells was resistant to inhibition by nitrobenzylthioinosine. In its properties the latter resembled nitrobenzylthioinosine-resistant nucleoside transport observed in other types of mammalian cells. It amounted to less than 1% of the total nucleoside transport activity of wild-type S49 cells. The results indicate that nitrobenzylthioinosine-resistant and -sensitive nucleoside transports are genetically distinguishable. In wild-type cells, the salvage of thymidine, when present at concentrations higher than 1 to 10 microM, was limited by phosphorylation, because of the saturation of thymidine kinase. In AE1 cells, entry into the cells mainly limited thymidine salvage, but at high thymidine concentrations the combined entry via residual transport and nonmediated permeation was sufficiently rapid to support intracellular thymidine phosphorylation at rates comparable to those observed in wild-type cells.