z-logo
open-access-imgOpen Access
DNA rearrangement causes a high rate of spontaneous mutation at the immunoglobulin heavy-chain locus of a mouse myeloma cell line.
Author(s) -
Hua Yu,
Laurel A. Eckhardt
Publication year - 1986
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.6.12.4228
Subject(s) - biology , immunoglobulin heavy chain , microbiology and biotechnology , mutant , antibody , gene , immunoglobulin light chain , immunoglobulin gene , gene rearrangement , immunoglobulin class switching , mutation , dna , genetics , b cell
The spontaneous mutation rate of immunoglobulin genes expressed in myeloma cells is well above that of other genes expressed in these or in other cell types. The nature of such mutations in one myeloma cell line, MPC11, was explored at the molecular level. Included in this study were MPC11 variants representing 24 independent and spontaneous mutations affecting immunoglobulin secretion. Of the mutants studied, 19 had ceased immunoglobulin heavy chain (IgH) production (nonproducers), and 5 produced from as little as 1/1,000 to as much as 1/10 the amount of immunoglobulin produced by MPC11 (low producers). Only one of the MPC11 mutants (a nonproducer) showed no evidence of DNA rearrangement in or near the expressed IgH gene. The formerly expressed gamma 2b gene had been deleted in 18 of the 19 nonproducers. All of the low producers had undergone DNA rearrangement in or near the expressed IgH gene, and three of them produced immunoglobulin of a new heavy chain class. The cause for reduced heavy-chain synthesis in the low producers is not yet known. However, in several of these mutants, the defect appeared to be posttranscriptional. In these cell lines, steady-state IgH mRNA levels were much lower than in the parent cell line, while the heavy-chain gene transcription rate remained unchanged.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here