z-logo
open-access-imgOpen Access
Effect of adenovirus on metabolism of specific host mRNAs: transport control and specific translational discrimination.
Author(s) -
A Babich,
L T Feldman,
Joseph R. Nevins,
James Darnell,
C Weinberger
Publication year - 1983
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.3.7.1212
Subject(s) - biology , protein biosynthesis , messenger rna , translation (biology) , cytoplasm , microbiology and biotechnology , adenovirus infection , ribosome , gene expression , rna , gene , virology , virus , biochemistry
We have studied the adenovirus-induced inhibition of host cell protein synthesis and the effect of infection on the overall metabolism of host cell mRNA during the late phase of adenovirus infection by following the fate of a number of cellular mRNAs complementary to specific cloned DNA segments. At a time in infection when the rate of total cellular protein synthesis is drastically (greater than 90%) reduced, transcription of specific cellular genes is undiminished. However, the transport of newly synthesized cellular mRNA to the cytoplasm is greatly decreased. This decreased appearance of new mRNA in the cytoplasm cannot account for the observed cessation of cell specific protein synthesis, however, since the concentration of several preexisting cellular mRNAs, including the mRNA for actin, remains unchanged throughout the course of infection. The preexisting mRNA is intact, capped, and functional as judged by its ability to direct protein synthesis in vitro in a cap-dependent fashion. The interruption in host translation appears to operate at the level of initiation directly, since we find that fewer ribosomes are associated with a given cellular mRNA after infection than before infection. Furthermore, the in vivo inhibition of cellular protein synthesis does not appear to be the result of competition with viral mRNA, since conditions which prevent the efficient initiation of translation of viral mRNA (infection with a viral mutant) do not result in the recovery of cell translation. Thus, it appears that a late adenovirus gene product directly mediates a shutoff of host protein synthesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here