z-logo
open-access-imgOpen Access
Biochemical activities of T-antigen proteins encoded by simian virus 40 A gene deletion mutants.
Author(s) -
Robin Clark,
Keith Peden,
James M. Pipas,
Daniel Nathans,
Robert Tjian
Publication year - 1983
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.3.2.220
Subject(s) - biology , mutant , microbiology and biotechnology , antigen , gene , immunoprecipitation , dna , dna replication , virus , monoclonal antibody , viral replication , virology , antibody , biochemistry , genetics
We have analyzed T antigens produced by a set of simian virus 40 (SV40) A gene deletion mutants for ATPase activity and for binding to the SV40 origin of DNA replication. Virus stocks of nonviable SV40 A gene deletion mutants were established in SV40-transformed monkey COS cells. Mutant T antigens were produced in mutant virus-infected CV1 cells. The structures of the mutant T antigens were characterized by immunoprecipitation with monoclonal antibodies directed against distinct regions of the T-antigen molecule. T antigens in crude extracts prepared from cells infected with 10 different mutants were immobilized on polyacrylamide beads with monoclonal antibodies, quantified by Coomassie blue staining, and then assayed directly for T antigen-specific ATPase activity and for binding to the SV40 origin of DNA replication. Our results indicate that the T antigen coding sequences required for origin binding map between 0.54 and 0.35 map units on the SV40 genome. In contrast, sequences closer to the C terminus of T antigen (between 0.24 and 0.20 map units) are required for ATPase activity. The presence of the ATPase activity correlated closely with the ability of the mutant viruses to replicate and to transform nonpermissive cells. The origin binding activity was retained, however, by three mutants that lacked these two functions, indicating that this activity is not sufficient to support either cellular transformation or viral replication. Neither the ATPase activity nor the origin binding activity correlated with the ability of the mutant DNA to activate silent rRNA genes or host cell DNA synthesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here