
Hemin-Mediated Regulation of an Antioxidant-Responsive Element of the Human Ferritin H Gene and Role of Ref-1 during Erythroid Differentiation of K562 Cells
Author(s) -
Kouta Iwasaki,
Elizabeth L. Mackenzie,
Kiros Hailemariam,
Kensuke Sakamoto,
Yoshiaki Tsuji
Publication year - 2006
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.26.7.2845-2856.2006
Subject(s) - hemin , biology , transcription factor , microbiology and biotechnology , ferritin , transfection , k562 cells , reporter gene , gene expression , response element , gene , promoter , heme , biochemistry , enzyme
An effective utilization of intracellular iron is a prerequisite for erythroid differentiation and hemoglobinization. Ferritin, consisting of 24 subunits of H and L, plays a crucial role in iron homeostasis. Here, we have found that the H subunit of the ferritin gene is activated at the transcriptional level during hemin-induced differentiation of K562 human erythroleukemic cells. Transfection of various 5′ regions of the human ferritin H gene fused to a luciferase reporter into K562 cells demonstrated that hemin activates ferritin H transcription through an antioxidant-responsive element (ARE) that is responsible for induction of a battery of phase II detoxification genes by oxidative stress. Gel retardation and chromatin immunoprecipitation assays demonstrated that hemin induced binding of cJun, JunD, FosB, and Nrf2 b-zip transcription factors to AP1 motifs of the ferritin H ARE, despite no significant change in expression levels or nuclear localization of these transcription factors. A Gal4-luciferase reporter assay did not show activation of these b-zip transcription factors after hemin treatment; however, redox factor 1 (Ref-1), which increases DNA binding of Jun/Fos family members via reduction of a conserved cysteine in their DNA binding domains, showed induced nuclear translocation after hemin treatment in K562 cells. Consistently, Ref-1 enhanced Nrf2 binding to the ARE and ferritin H transcription. Hemin also activated ARE sequences of other phase II genes, such as GSTpi and NQO1. Collectively, these results suggest that hemin activates the transcription of the ferritin H gene during K562 erythroid differentiation by Ref-1-mediated activation of these b-zip transcription factors to the ARE.