
IκB Kinase α-Mediated Derepression of SMRT Potentiates Acetylation of RelA/p65 by p300
Author(s) -
Jamie E. Hoberg,
Anita E. Popko,
Catherine S. Ramsey,
Marty W. Mayo
Publication year - 2006
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.26.2.457-471.2006
Subject(s) - corepressor , biology , chromatin immunoprecipitation , p300 cbp transcription factors , transcription factor , phosphorylation , microbiology and biotechnology , repressor , promoter , biochemistry , histone acetyltransferases , gene expression , gene
Over the last several years, significant progress has been made in identifying chromatin-regulated events that govern NF-κB transcription. Using either laminin attachment or tumor necrosis factor alpha as a physiological stimulus of NF-κB activation, we demonstrate that IκB kinase α (IKKα) is recruited to chromatin in distinct phases. In the initial phase, IKKα is responsible for derepressing the silencing mediator for retinoic acid and thyroid hormone receptor (SMRT)-histone deacetylase 3 (HDAC3) corepressor complex from the p50 homodimer. However, in the latter phase, chromatin-bound IKKα coordinates the simultaneous phosphorylation of RelA/p65(S536) and SMRT(S2410) as detected by chromatin immunoprecipitation (ChIP) assays. Although phosphorylated SMRT remains bound to the active p50-RelA/p65 heterodimer of NF-κB, derepression of SMRT is evidenced by the loss of chromatin-associated HDAC3 activity. ChIP and re-ChIP analysis demonstrates that phosphorylation of RelA/p65(S536) and SMRT(S2410) occurs prior to acetylation of RelA/p65 at K310. Moreover, IKKα-induced phosphorylation of RelA/p65(S536) displaces corepressor activity, allowing p300-mediated acetylation of RelA/p65. Introduction of nonphosphorylatable mutants of RelA/p65 and SMRT proteins or the inhibition of IKK activity results in active repression of NF-κB promoters by tethering the SMRT-HDAC3 complex. Similar to phosphorylation within the Rel homology domain of RelA/p65, which governs an exchange of HDAC1 for CBP/p300 acetyltransferases, we demonstrate that phosphorylation within the transactivation domain of RelA/p65(S536) displaces SMRT-HDAC3 repressor activity, allowing p300 to acetylate RelA/p65.