
Abnormalities Caused by Carbohydrate Alterations in Iβ6-N-Acetylglucosaminyltransferase-Deficient Mice
Author(s) -
Guo Yun Chen,
Hisako Muramatsu,
Mineo Kondo,
Nobuyuki Kurosawa,
Yoichi Miyake,
Nobuo Takeda,
Takashi Muramatsu
Publication year - 2005
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.25.17.7828-7838.2005
Subject(s) - biology , kidney , endocrinology , medicine , exon , stomach , biochemistry , gene
Ibeta6-N-acetylglucosaminyltransferase (IGnT) catalyzes the branching of poly-N-acetyllactosamine carbohydrate chains. In both humans and mice, three spliced forms of IGnT have been identified, and a common exon is present in all of them. We generated mice deficient in the common exon to understand the physiological function of poly-N-acetyllactosamine branching. IGnT activity was abolished in the stomach, kidney, bone marrow, and cerebellum of the deficient mice, while a low level of the activity persisted in the small intestine. Immunohistochemical analysis confirmed the loss of I antigen from the lung, stomach, and kidney. The deficient mice had reduced spontaneous locomotive activity. The number of peripheral blood lymphocytes was also reduced and renal function decreased in the deficient mice. Furthermore, in aged mice, vacuolization occurred in the kidney, and epidermoid cysts were frequently formed. However, cataracts did not develop earlier in the deficient mice. Decreased levels of lysosomal proteins, LAMP-2 and synaptotagmin VII, were found in the kidney of the deficient mice and correlated with renal abnormalities.