
Abnormal Glucose Homeostasis and Pancreatic Islet Function in Mice with Inactivation of the Fem1b Gene
Author(s) -
Deyin Lu,
Tereza Ventura-Holman,
Jing Li,
Robert W. McMurray,
José S. Subauste,
Joseph F. Maher
Publication year - 2005
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.25.15.6570-6577.2005
Subject(s) - biology , glucose homeostasis , endocrinology , medicine , pancreatic islets , pancreas , homeostasis , diabetes mellitus , insulin , islet , insulin resistance
Type 2 diabetes mellitus is a disorder of glucose homeostasis involving complex gene and environmental interactions that are incompletely understood. Mammalian homologs of nematode sex determination genes have recently been implicated in glucose homeostasis and type 2 diabetes mellitus. These are the Hedgehog receptor Patched and Calpain-10, which have homology to the nematode tra-2 and tra-3 sex determination genes, respectively. Here, we have developed Fem1b knockout (Fem1b-KO) mice, with targeted inactivation of Fem1b, a homolog of the nematode fem-1 sex determination gene. We show that the Fem1b-KO mice display abnormal glucose tolerance and that this is due predominantly to defective glucose-stimulated insulin secretion. Arginine-stimulated insulin secretion is also affected. The Fem1b gene is expressed in pancreatic islets, within both beta cells and non-beta cells, and is highly expressed in INS-1E cells, a pancreatic beta-cell line. In conclusion, these data implicate Fem1b in pancreatic islet function and insulin secretion, strengthening evidence that a genetic pathway homologous to nematode sex determination may be involved in glucose homeostasis and suggesting novel genes and processes as potential candidates in the pathogenesis of diabetes mellitus.