z-logo
open-access-imgOpen Access
The 3′→5′ Exonuclease of Apn1 Provides an Alternative Pathway To Repair 7,8-Dihydro-8-Oxodeoxyguanosine in Saccharomyces cerevisiae
Author(s) -
А. А. Ищенко,
Xiaoming Yang,
Dindial Ramotar,
Murat Saparbaev
Publication year - 2005
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.25.15.6380-6390.2005
Subject(s) - biology , ap endonuclease , dna glycosylase , saccharomyces cerevisiae , dna repair , exonuclease , mutagenesis , ap site , dna damage , endonuclease , dna , dna (apurinic or apyrimidinic site) lyase , microbiology and biotechnology , base excision repair , transposon mutagenesis , dna polymerase , biochemistry , mutant , yeast , transposable element , gene
The 8-oxo-7,8-dihydrodeoxyguanosine (8oxoG), a major mutagenic DNA lesion, results either from direct oxidation of guanines or misincorporation of 8oxodGTP by DNA polymerases. At present, little is known about the mechanisms preventing the mutagenic action of 8oxodGTP in Saccharomyces cerevisiae. Herein, we report for the first time the identification of an alternative repair pathway for 8oxoG residues initiated by S. cerevisiae AP endonuclease Apn1, which is endowed with a robust progressive 3'-->5' exonuclease activity towards duplex DNA. We show that yeast cell extracts, as well as purified Apn1, excise misincorporated 8oxoG, providing a damage-cleansing function to DNA synthesis. Consistent with these results, deletion of both OGG1 encoding 8oxoG-DNA glycosylase and APN1 causes nearly 46-fold synergistic increase in the spontaneous mutation rate, and this enhanced mutagenesis is primarily due to G . C to T . A transversions. Expression of the bacterial 8oxodGTP triphosphotase MutT in the apn1Delta ogg1Delta mutant reduces the mutagenesis. Taken together, our results indicate that Apn1 is involved in an S. cerevisiae 8-oxoguanine-DNA glycosylase (Ogg1)-independent repair pathway for 8oxoG residues. Interestingly, the human major AP endonuclease, Ape1, also exhibits similar exonuclease activity towards 8oxoG residues, raising the possibility that this enzyme could participate in the prevention of mutations that would otherwise result from the incorporation of 8oxodGTP.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here