
Core Promoter Binding by Histone-Like TAF Complexes
Author(s) -
Hanshuang Shao,
Merav Revach,
Sandra Moshonov,
Yael Tzuman,
Kfir Gazit,
Shira Albeck,
Tamar Unger,
Rivka Dikstein
Publication year - 2005
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.25.1.206-219.2005
Subject(s) - biology , histone , genetics , computational biology , microbiology and biotechnology , dna
A major function of TFIID is core promoter recognition. TFIID consists of TATA-binding protein (TBP) and 14 TBP-associated factors (TAFs). Most of them contain a histone fold domain (HFD) that lacks the DNA-contacting residues of histones. Whether and how TAF HFDs contribute to core promoter DNA binding are yet unresolved. Here we examined the DNA binding activity of TAF9, TAF6, TAF4b, and TAF12, which are related to histones H3, H4, H2A, and H2B, respectively. Each of these TAFs has intrinsic DNA binding activity adjacent to or within the HFD. The DNA binding domains were mapped to evolutionarily conserved and essential regions. Remarkably, HFD-mediated interaction enhanced the DNA binding activity of each of the TAF6-TAF9 and TAF4b-TAF12 pairs and of a histone-like octamer complex composed of the four TAFs. Furthermore, HFD-mediated interaction stimulated sequence-specific binding by TAF6 and TAF9. These results suggest that TAF HFDs merge with other conserved domains for efficient and specific core promoter binding.