
Biochemical Characterization of the Drosophila Wingless Signaling Pathway Based on RNA Interference
Author(s) -
Hiroko Matsubayashi,
Sonoka Sese,
Jong-Seo Lee,
Tadaoki Shirakawa,
Takeshi Iwatsubo,
Taisuke Tomita,
Shin-ichi Yanagawa
Publication year - 2004
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.24.5.2012-2024.2004
Subject(s) - phosphorylation , biology , rna interference , kinase , serine , casein kinase 1 , microbiology and biotechnology , signal transduction , ubiquitin , biochemistry , protein kinase a , rna , gene
Regulation of Armadillo (Arm) protein levels through ubiquitin-mediated degradation plays a central role in the Wingless (Wg) signaling. Although zeste-white3 (Zw3)-mediated Arm phosphorylation has been implicated in its degradation, we have recently shown that casein kinase Ialpha (CKIalpha) also phosphorylates Arm and induces its degradation. However, it remains unclear how CKIalpha and Zw3, as well as other components of the Arm degradation complex, regulate Arm phosphorylation in response to Wg. In particular, whether Wg signaling suppresses CKIalpha- or Zw3-mediated Arm phosphorylation in vivo is unknown. To clarify these issues, we performed a series of RNA interference (RNAi)-based analyses in Drosophila S2R+ cells by using antibodies that specifically recognize Arm phosphorylated at different serine residues. These analyses revealed that Arm phosphorylation at serine-56 and at threonine-52, serine-48, and serine-44, is mediated by CKIalpha and Zw3, respectively, and that Zw3-directed Arm phosphorylation requires CKIalpha-mediated priming phosphorylation. Daxin stimulates Zw3- but not CKIalpha-mediated Arm phosphorylation. Wg suppresses Zw3- but not CKIalpha-mediated Arm phosphorylation, indicating that a vital regulatory step in Wg signaling is Zw3-mediated Arm phosphorylation. In addition, further RNAi-based analyses of the other aspects of the Wg pathway clarified that Wg-induced Dishevelled phosphorylation is due to CKIalpha and that presenilin and protein kinase A play little part in the regulation of Arm protein levels in Drosophila tissue culture cells.