z-logo
open-access-imgOpen Access
Preferential Transcription of Rabbit Aldh1a1 in the Cornea: Implication of Hypoxia-Related Pathways
Author(s) -
R. B. Hough,
Joram Piatigorsky
Publication year - 2004
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.24.3.1324-1340.2004
Subject(s) - biology , microbiology and biotechnology , transfection , retinoic acid , transcription factor , reporter gene , corneal epithelium , transcription (linguistics) , cornea , luciferase , gene , gene expression , biochemistry , linguistics , philosophy , neuroscience
Here we examine the molecular basis for the known preferential expression of rabbit aldehyde dehydrogenase class 1 (ALDH1A1) in the cornea. The rabbit Aldh1a1 promoter-firefly luciferase reporter transgene (-3519 to +43) was expressed preferentially in corneal cells in transfection tests and in transgenic mice, with an expression pattern resembling that of rabbit Aldh1a1. The 5' flanking region of the rabbit Aldh1a1 gene resembled that in the human gene (60.2%) more closely than that in the mouse (46%) or rat (51.5%) genes. We detected three xenobiotic response elements (XREs) and one E-box consensus sequence in the rabbit Aldh1a1 upstream region; these elements are prevalent in other highly expressed corneal genes and can mediate stimulation by dioxin and repression by CoCl(2), which simulates hypoxia. The rabbit Aldh1a1 promoter was stimulated fourfold by dioxin in human hepatoma cells and repressed threefold by CoCl(2) treatment in rabbit corneal stromal and epithelial cells. Cotransfection, mutagenesis, and gel retardation experiments implicated the hypoxia-inducible factor 3alpha/aryl hydrocarbon nuclear translocator heterodimer for Aldh1a1 promoter activation via the XREs and stimulated by retinoic acid protein 13 for promoter repression via the E-box. These experiments suggest that XREs, E-boxes, and PAS domain/basic helix-loop-helix transcription factors (bHLH-PAS) contribute to preferential rabbit Aldh1a1 promoter activity in the cornea, implicating hypoxia-related pathways.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here