
Depletion of the 110-Kilodalton Isoform of Poly(ADP-Ribose) Glycohydrolase Increases Sensitivity to Genotoxic and Endotoxic Stress in Mice
Author(s) -
Ulrich Cortes,
WeiMin Tong,
Donna L. Coyle,
Mirella L. Meyer-Ficca,
Ralph G. Meyer,
Virginie Pétrilli,
Zdenko Herceg,
Elaine L. Jacobson,
Myron K. Jacobson,
Zhaoqi Wang
Publication year - 2004
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.24.16.7163-7178.2004
Subject(s) - biology , poly adp ribose polymerase , dna damage , microbiology and biotechnology , dna repair , gene isoform , parp inhibitor , polymerase , enzyme , dna , biochemistry , gene
Poly(ADP-ribosylation) is rapidly stimulated in cells following DNA damage. This posttranslational modification is regulated by the synthesizing enzyme poly(ADP-ribose) polymerase 1 (PARP-1) and the degrading enzyme poly(ADP-ribose) glycohydrolase (PARG). Although the role of PARP-1 in response to DNA damage has been studied extensively, the function of PARG and the impact of poly(ADP-ribose) homeostasis in various cellular processes are largely unknown. Here we show that by gene targeting in embryonic stem cells and mice, we specifically deleted the 110-kDa PARG protein (PARG(110)) normally found in the nucleus and that depletion of PARG(110) severely compromised the automodification of PARP-1 in vivo. PARG(110)-deficient mice were viable and fertile, but these mice were hypersensitive to alkylating agents and ionizing radiation. In addition, these mice were susceptible to streptozotocin-induced diabetes and endotoxic shock. These data indicate that PARG(110) plays an important role in DNA damage responses and in pathological processes.