
SMU-2 and SMU-1, Caenorhabditis elegans Homologs of Mammalian Spliceosome-Associated Proteins RED and fSAP57, Work Together To Affect Splice Site Choice
Author(s) -
Angela Spartz,
Robert K Herman,
Joseph W. Shaw
Publication year - 2004
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.24.15.6811-6823.2004
Subject(s) - biology , rna splicing , spliceosome , exon , caenorhabditis elegans , genetics , microbiology and biotechnology , gene , splice site mutation , rna binding protein , mutation , alternative splicing , rna
Mutations in the Caenorhabditis elegans gene smu-2 suppress mec-8 and unc-52 mutations. It has been proposed that MEC-8 regulates the alternative splicing of unc-52 transcripts, which encode the core protein of perlecan, a basement membrane proteoglycan. We show that mutation in smu-2 leads to enhanced accumulation of transcripts that skip exon 17, but not exon 18, of unc-52, which explains our finding that smu-2 mutations suppress the uncoordination conferred by nonsense mutations in exon 17, but not in exon 18, of unc-52. We conclude that smu-2 encodes a ubiquitously expressed nuclear protein that is 40% identical to the human RED protein, a component of purified spliceosomes. The effects of smu-2 mutation on both unc-52 pre-mRNA splicing and the suppression of mec-8 and unc-52 mutant phenotypes are indistinguishable from the effects of mutation in smu-1, a gene that encodes a protein that is 62% identical to human spliceosome-associated protein fSAP57. We provide evidence that SMU-2 protects SMU-1 from degradation in vivo. In vitro and in vivo coimmunoprecipitation experiments indicate that SMU-2 and SMU-1 bind to each other. We propose that SMU-2 and SMU-1 function together to regulate splice site choice in the pre-mRNAs of unc-52 and other genes.