
Myeloid Cell Function in MRP-14 (S100A9) Null Mice
Author(s) -
Josie A. R. Hobbs,
Richard May,
Kiki Tanousis,
Eileen McNeill,
Margaret Mathies,
Christoffer Gebhardt,
Robert B. Henderson,
Matthew Robinson,
Nancy Hogg
Publication year - 2003
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.23.7.2564-2576.2003
Subject(s) - s100a9 , biology , myeloid , chemokine , microbiology and biotechnology , chemotaxis , function (biology) , immunology , biochemistry , immune system , inflammation , receptor
Myeloid-related protein 14 (MRP-14) and its heterodimeric partner, MRP-8, are cytosolic calcium-binding proteins, highly expressed in neutrophils and monocytes. To understand the function of MRP-14, we performed targeted disruption of the MRP-14 gene in mice. MRP-14(-/-) mice showed no obvious phenotype and were fertile. MRP-8 mRNA but not protein is present in the myeloid cells of these mice, suggesting that the stability of MRP-8 protein is dependent on MRP-14 expression. A compensatory increase in other proteins was not detected in cells lacking MRP-8 and MRP-14. Although the morphology of MRP-14(-/-) myeloid cells was not altered, they were significantly less dense. When Ca(2+) responses were investigated, there was no change in the maximal response to the chemokine MIP-2. At lower concentrations, however, there was reduced responsiveness in MRP-14(-/-) compared with MRP-14(+/+) neutrophils. This alteration in the ability to flux Ca(2+) did not impair the ability of the MRP-14(-/-) neutrophils to respond chemotactically to MIP-2. In addition, the myeloid cell functions of phagocytosis, superoxide burst, and apoptosis were unaffected in MRP-14(-/-) cells. In an in vivo model of peritonitis, MRP-14(-/-) mice showed no difference from wild-type mice in induced inflammatory response. The data indicate that MRP-14 and MRP-8 are dispensable for many myeloid cell functions.