
RNA Polymerase II Accumulation in the Promoter-Proximal Region of the Dihydrofolate Reductase and γ-Actin Genes
Author(s) -
Chonghui Cheng,
Phillip A. Sharp
Publication year - 2003
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.23.6.1961-1967.2003
Subject(s) - rna polymerase ii , biology , microbiology and biotechnology , phosphorylation , transcription (linguistics) , polyadenylation , promoter , sr protein , gene , transcription factor ii d , serine , primary transcript , rna splicing , rna , genetics , gene expression , linguistics , philosophy
The carboxyl-terminal domain (CTD) of RNA polymerase II (Pol II) can be phosphorylated at serine 2 (Ser-2) and serine 5 (Ser-5) of the CTD heptad repeat YSPTSPS, and this phosphorylation is important in coupling transcription to RNA processing, including 5' capping, splicing, and polyadenylation. The mammalian endogenous dihydrofolate reductase and gamma-actin genes have been used to study the association of Pol II with different regions of transcribed genes (promoter-proximal compared to distal regions) and the phosphorylation status of its CTD. For both genes, Pol II is more concentrated in the promoter-proximal regions than in the interior regions. Moreover, different phosphorylation forms of Pol II are associated with distinct regions. Ser-5 phosphorylation of Pol II is concentrated near the promoter, while Ser-2 phosphorylation is observed throughout the gene. These results suggest that the accumulation of paused Pol II in promoter-proximal regions may be a common feature of gene regulation in mammalian cells.