z-logo
open-access-imgOpen Access
14-3-3σ Positively Regulates p53 and Suppresses Tumor Growth
Author(s) -
Heng Yang,
Yu Wen,
Chih Hsin Chen,
Guillermina Lozano,
Mong Hong Lee
Publication year - 2003
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.23.20.7096-7107.2003
Subject(s) - biology , cell cycle , carcinogenesis , mdm2 , microbiology and biotechnology , cell cycle checkpoint , cancer research , dna damage , cell growth , oncogene , regulation of gene expression , cell , gene , dna , genetics
The 14-3-3 sigma (sigma) protein, a negative regulator of the cell cycle, is a human mammary epithelium-specific marker that is downregulated in transformed mammary carcinoma cells. It has also been identified as a p53-inducible gene product involved in cell cycle checkpoint control after DNA damage. Although 14-3-3 sigma is linked to p53-regulated cell cycle checkpoint control, detailed mechanisms of how cell cycle regulation occurs remain unclear. Decreased expression of 14-3-3 sigma was recently reported in several types of carcinomas, further suggesting that the negative regulatory role of 14-3-3 sigma in the cell cycle is compromised during tumorigenesis. However, this possible tumor-suppressive role of 14-3-3 sigma has not yet been characterized. Here, we studied the link between 14-3-3 sigma activities and p53 regulation. We found that 14-3-3 sigma interacted with p53 in response to the DNA-damaging agent adriamycin. Importantly, 14-3-3 sigma expression led to stabilized expression of p53. In studying the molecular mechanism of this increased stabilization of p53, we found that 14-3-3 sigma antagonized the biological functions of Mdm2 by blocking Mdm2-mediated p53 ubiquitination and nuclear export. In addition, we found that 14-3-3 sigma facilitated the oligomerization of p53 and enhanced p53's transcriptional activity. As a target gene of p53, 14-3-3 sigma appears to have a positive feedback effect on p53 activity. Significantly, we also showed that overexpression of 14-3-3 sigma inhibited oncogene-activated tumorigenicity in a tetracycline-regulated 14-3-3 sigma system. These results defined an important p53 regulatory loop and suggested that 14-3-3 sigma expression can be considered for therapeutic intervention in cancers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here