
The Pleckstrin Homology (PH) Domain-Interacting Protein Couples the Insulin Receptor Substrate 1 PH Domain to Insulin Signaling Pathways Leading to Mitogenesis and GLUT4 Translocation
Author(s) -
Janet Farhang-Fallah,
Varinder K. Randhawa,
Anjaruwee S. Nimnual,
Amira Klip,
Dafna Bar–Sagi,
Maria Rozakis-Adcock
Publication year - 2002
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.22.20.7325-7336.2002
Subject(s) - glut4 , pleckstrin homology domain , biology , insulin receptor , irs1 , insulin receptor substrate , signal transduction , microbiology and biotechnology , phosphotyrosine binding domain , insulin , biochemistry , tyrosine kinase , glucose transporter , endocrinology , insulin resistance , sh2 domain
Receptor-mediated tyrosine phosphorylation of the insulin receptor substrate 1 (IRS-1) is required for the propagation of many of insulin's biological effects. The amino-terminal pleckstrin homology (PH) domain of IRS-1 plays a pivotal role in promoting insulin receptor (IR)-IRS-1 protein interactions. We have recently reported the isolation of a PH domain-interacting protein, PHIP, which selectively binds to the IRS-1 PH domain and is stably associated with IRS-1 in mammalian cells. Here we demonstrate that overexpression of PHIP in fibroblasts enhances insulin-induced transcriptional responses in a mitogen-activated protein kinase-dependent manner. In contrast, a dominant-negative mutant of PHIP (DN-PHIP) was shown to specifically block transcriptional and mitogenic signals elicited by insulin and not serum. In order to examine whether PHIP/IRS-1 complexes participate in the signal transduction pathway linking the IR to GLUT4 traffic in muscle cells, L6 myoblasts stably expressing a myc-tagged GLUT4 construct (L6GLUT4myc) were transfected with either wild-type or dominant-interfering forms of PHIP. Whereas insulin-dependent GLUT4myc membrane translocation was not affected by overexpression of PHIP, DN-PHIP caused a nearly complete inhibition of GLUT4 translocation, in a manner identical to that observed with a dominant-negative mutant of the p85 subunit of phosphatidylinositol 3-kinase (Deltap85). Furthermore, DN-PHIP markedly inhibited insulin-stimulated actin cytoskeletal reorganization, a process required for the productive incorporation of GLUT4 vesicles at the cell surface in L6 cells. Our results are consistent with the hypothesis that PHIP represents a physiological protein ligand of the IRS-1 PH domain, which plays an important role in insulin receptor-mediated mitogenic and metabolic signal transduction.