z-logo
open-access-imgOpen Access
Sequence-Specific Transcriptional Repression by KS1, a Multiple-Zinc-Finger–Krüppel-Associated Box Protein
Author(s) -
Brian Gebelein,
Raúl Urrutia
Publication year - 2001
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.21.3.928-939.2001
Subject(s) - zinc finger , krüppel , biology , zinc finger nuclease , lim domain , ring finger domain , protein–dna interaction , sp1 transcription factor , consensus sequence , transcription factor , promoter , dna binding protein , genetics , microbiology and biotechnology , gene , peptide sequence , gene expression
The vertebrate genome contains a large number of Krüppel-associated box-zinc finger genes that encode 10 or more C(2)-H(2) zinc finger motifs. Members of this gene family have been proposed to function as transcription factors by binding DNA through their zinc finger region and repressing gene expression via the KRAB domain. To date, however, no Krüppel-associated box-zinc finger protein (KRAB-ZFP) and few proteins with 10 or more zinc finger motifs have been shown to bind DNA in a sequence-specific manner. Our laboratory has recently identified KS1, a member of the KRAB-ZFP family that contains 10 different C(2)-H(2) zinc finger motifs, 9 clustered at the C terminus with an additional zinc finger separated by a short linker region. In this study, we used a random oligonucleotide binding assay to identify a 27-bp KS1 binding element (KBE). Reporter assays demonstrate that KS1 represses the expression of promoters containing this DNA sequence. Deletion and site-directed mutagenesis reveal that KS1 requires nine C-terminal zinc fingers and the KRAB domain for transcriptional repression through the KBE site, whereas the isolated zinc finger and linker region are dispensable for this function. Additional biochemical assays demonstrate that the KS1 KRAB domain interacts with the KAP-1 corepressor, and mutations that abolish this interaction alleviate KS1-mediated transcriptional repression. Thus, this study provides the first direct evidence that a KRAB-ZFP binds DNA to regulate gene expression and provides insight into the mechanisms used by multiple-zinc-finger proteins to recognize DNA sequences.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here