
The gypsy Insulator Can Act as a Promoter-Specific Transcriptional Stimulator
Author(s) -
Wei Wei,
Michael Brennan
Publication year - 2001
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.21.22.7714-7720.2001
Subject(s) - enhancer , biology , insulator (electricity) , promoter , transcription factor , repressor , transcription (linguistics) , dna binding protein , genetics , gene , microbiology and biotechnology , gene expression , physics , linguistics , philosophy , optoelectronics
Insulators define chromosomal domains such that an enhancer in one domain cannot activate a promoter in a different domain. We show that the Drosophila gypsy insulator behaves as a cis-stimulatory element in the larval fat body. Transcriptional stimulation by the insulator is distance dependent, as expected for a promoter element as opposed to an enhancer. Stimulation of a test alcohol dehydrogenase promoter requires a binding site for a GATA transcription factor, suggesting that the insulator may be facilitating access of this DNA binding protein to the promoter. Short-range stimulation requires both the Suppressor of Hairy-wing protein and the Mod(mdg4)-62.7 protein encoded by the trithorax group gene mod(mdg4). In the absence of interaction with Mod(mdg4)-62.7, the insulator is converted into a short-range transcriptional repressor but retains some cis-stimulatory activity over longer distances. These results indicate that insulator and promoter sequences share important characteristics and are not entirely distinct. We propose that the gypsy insulator can function as a promoter element and may be analogous to promoter-proximal regulatory modules that integrate input from multiple distal enhancer sequences.