
Identification of Insulin Receptor Substrate 1 (IRS-1) and IRS-2 as Signaling Intermediates in the α6β4 Integrin-Dependent Activation of Phosphoinositide 3-OH Kinase and Promotion of Invasion
Author(s) -
Leslie M. Shaw
Publication year - 2001
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.21.15.5082-5093.2001
Subject(s) - biology , integrin , insulin receptor , phosphoinositide 3 kinase , microbiology and biotechnology , cd49c , integrin, beta 6 , tyrosine phosphorylation , signal transduction , integrin alpha m , phosphorylation , insulin receptor substrate , tyrosine kinase , irs1 , receptor tyrosine kinase , pi3k/akt/mtor pathway , biochemistry , receptor , insulin , endocrinology , insulin resistance
Expression of the alpha6beta4 integrin increases the invasive potential of carcinoma cells by a mechanism that involves activation of phosphoinositide 3-OH kinase (PI3K). In the present study, we investigated the signaling pathway by which the alpha6beta4 integrin activates PI3K. Neither the alpha6 nor the beta4 cytoplasmic domain contains the consensus binding motif for PI3K, pYMXM, indicating that additional proteins are likely to be involved in the activation of this lipid kinase by the alpha6beta4 integrin. We identified insulin receptor substrate 1 (IRS-1) and IRS-2 as signaling intermediates in the activation of PI3K by the alpha6beta4 integrin. IRS-1 and IRS-2 are cytoplasmic adapter proteins that do not contain intrinsic kinase activity but rather function by recruiting proteins to surface receptors, where they organize signaling complexes. Ligation of the alpha6beta4 receptor promotes tyrosine phosphorylation of IRS-1 and IRS-2 and increases their association with PI3K, as determined by coimmunoprecipitation. Moreover, we identified a tyrosine residue in the cytoplasmic domain of the beta4 subunit, Y1494, that is required for alpha6beta4-dependent phosphorylation of IRS-2 and activation of PI3K in response to receptor ligation. Most importantly, Y1494 is essential for the ability of the alpha6beta4 integrin to promote carcinoma invasion. Taken together, these results imply a key role for the IRS proteins in the alpha6beta4-dependent promotion of carcinoma invasion.