z-logo
open-access-imgOpen Access
An Engineered PAX3-KRAB Transcriptional Repressor Inhibits the Malignant Phenotype of Alveolar Rhabdomyosarcoma Cells Harboring the Endogenous PAX3-FKHR Oncogene
Author(s) -
William J. Fredericks,
Kasirajan Ayyanathan,
Meenhard Herlyn,
Josh R. Friedman,
Frank J. Rauscher
Publication year - 2000
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.20.14.5019-5031.2000
Subject(s) - biology , alveolar rhabdomyosarcoma , fusion protein , repressor , fusion gene , carcinogenesis , pax3 , psychological repression , microbiology and biotechnology , gene , transcription factor , genetics , gene expression , recombinant dna , rhabdomyosarcoma , medicine , sarcoma , pathology
The t(2;13) chromosomal translocation in alveolar rhabdomyosarcoma tumors (ARMS) creates an oncogenic transcriptional activator by fusion of PAX3 DNA binding motifs to a COOH-terminal activation domain derived from the FKHR gene. The dominant oncogenic potential of the PAX3-FKHR fusion protein is dependent on the FKHR activation domain. We have fused the KRAB repression module to the PAX3 DNA binding domain as a strategy to suppress the activity of the PAX3-FKHR oncogene. The PAX3-KRAB protein bound PAX3 target DNA sequences and repressed PAX3-dependent reporter plasmids. Stable expression of the PAX3-KRAB protein in ARMS cell lines resulted in loss of the ability of the cells to grow in low-serum or soft agar and to form tumors in SCID mice. Stable expression of a PAX3-KRAB mutant, which lacks repression function, or a KRAB protein alone, lacking a PAX3 DNA binding domain, failed to suppress the ARMS malignant phenotype. These data suggest that the PAX3-KRAB repressor functions as a DNA-binding-dependent suppressor of the transformed phenotype of ARMS cells, probably via competition with the endogenous PAX3-FKHR oncogene and repression of target genes required for ARMS tumorigenesis. The engineered repressor approach that directs a transcriptional repression domain to target genes deregulated by the PAX3-FKHR oncogene may be a useful strategy to identify the target genes critical for ARMS tumorigenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here