z-logo
open-access-imgOpen Access
E2F4 and E2F1 Have Similar Proliferative Properties but Different Apoptotic and Oncogenic Properties In Vivo
Author(s) -
Dawei Wang,
Jamie L. Russell,
D. Gale Johnson
Publication year - 2000
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.20.10.3417-3424.2000
Subject(s) - biology , e2f1 , carcinogenesis , e2f , cancer research , transgene , retinoblastoma protein , genetically modified mouse , apoptosis , cell growth , microbiology and biotechnology , cell cycle , cancer , gene , genetics
Loss of retinoblastoma (Rb) tumor suppressor function, as occurs in many cancers, leads to uncontrolled proliferation, an increased propensity to undergo apoptosis, and tumorigenesis. Rb negatively regulates multiple E2F transcription factors, but the role of the different E2F family members in manifesting the cellular response to Rb inactivation is unclear. To study the effect of deregulated E2F4 activity on cell growth control and tumorigenesis, transgenic mouse lines expressing the E2F4 gene under the control of a keratin 5 (K5) promoter were developed, and their phenotypes were compared to those of previously generated K5 E2F1 transgenic mice. In contrast to what has been observed in vitro, ectopically expressed E2F4 was found to localize to the nucleus and induce proliferation to an extent similar to that induced by E2F1 in transgenic tissue. Unlike E2F1, E2F4 does not induce apoptosis, and this correlates with the differential abilities of these two E2F species to stimulatep19ARF expression in vivo. To examine the role of E2F4 in tumor development, the mouse skin two-stage carcinogenesis model was utilized. Unlike E2F1 transgenic mice, E2F4 transgenic mice developed skin tumors with a decreased latency and increased incidence compared to those characteristics in wild-type controls. These findings demonstrate that while the effects of E2F1 and E2F4 on cell proliferation in vivo are similar, their apoptotic and oncogenic properties are quite different.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here