z-logo
open-access-imgOpen Access
Nuclear ligation of RNA 5'-OH kinase products in tRNA.
Author(s) -
Ilga Winicov,
James D. Button
Publication year - 1982
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.2.3.241
Subject(s) - phosphodiester bond , biology , rnase p , rna , oligonucleotide , biochemistry , transfer rna , microbiology and biotechnology , nucleotide , ribonuclease t1 , rna splicing , cell nucleus , uridine , dna , gene
Mouse L-cell nuclei incorporate gamma-32P from ATP in vitro predominantly in 5'-monophosphoryl termini and internal phosphodiester bonds with a nonrandom nearest-neighbor distribution. In the presence of 1 microgram of alpha-amanitin per ml the gamma-32P showed a time-dependent appearance in RNA bands which migrated with mature tRNA species but not with pre-tRNA and 5S RNA. The gamma-32P was found in internal phosphodiester bonds as shown by alkaline phosphatase resistance and was identified in 3'-monophosphates after RNase T2, T1, and A digestion. The specificity of this incorporation was indicated by a limited number of labeled oligonucleotides from a T1 digest and identification of 70 to 80% of the 32P label as Cp on complete digestion of the eluted tRNA band. We also observed transiently [gamma-32P]ATP-labeled RNA bands (in 5'-monophosphate positions) that were 32 to 45 nucleotides long. The results presented suggest splicing of several mouse L-cell tRNA species in isolated nuclei which involve the RNA 5'-OH kinase products as intermediates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom