
The Nucleic Acid Binding Activity of Bleomycin Hydrolase Is Involved in Bleomycin Detoxification
Author(s) -
W. Jim Zheng,
Stephen Albert Johnston
Publication year - 1998
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.18.6.3580
Subject(s) - nucleic acid , biology , bleomycin , biochemistry , dna , rna , microbiology and biotechnology , binding site , genetics , chemotherapy , gene
Yeast bleomycin hydrolase, Gal6p, is a cysteine peptidase that detoxifies the anticancer drug bleomycin. Gal6p is a dual-function protein capable of both nucleic acid binding and peptide cleavage. We now demonstrate that Gal6p exhibits sequence-independent, high-affinity binding to single-stranded DNA, nicked double-stranded DNA, and RNA. A region of the protein that is involved in binding both RNA and DNA substrates is delineated. Immunolocalization reveals that the Gal6 protein is chiefly cytoplasmic and thus may be involved in binding cellular RNAs. Variant Gal6 proteins that fail to bind nucleic acid also exhibit reduced ability to protect cells from bleomycin toxicity, suggesting that the nucleic acid binding activity of Gal6p is important in bleomycin detoxification and may be involved in its normal biological functions.