
Axil, a Member of the Axin Family, Interacts with Both Glycogen Synthase Kinase 3β and β-Catenin and Inhibits Axis Formation ofXenopus Embryos
Author(s) -
Hideki Yamamoto,
Shosei Kishida,
Takaaki Uochi,
Satoshi Ikeda,
Shin-ya Koyama,
Makoto Asashima,
Akira Kikuchi
Publication year - 1998
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.18.5.2867
Subject(s) - biology , xenopus , gsk 3 , catenin , microbiology and biotechnology , wnt signaling pathway , glycogen synthase , beta catenin , atp synthase , embryo , kinase , phosphorylation , genetics , signal transduction , enzyme , biochemistry , gene
Using a yeast two-hybrid method, we identified a novel protein which interacts with glycogen synthase kinase 3beta (GSK-3beta). This protein had 44% amino acid identity with Axin, a negative regulator of the Wnt signaling pathway. We designated this protein Axil for Axin like. Like Axin, Axil ventralized Xenopus embryos and inhibited Xwnt8-induced Xenopus axis duplication. Axil was phosphorylated by GSK-3beta. Axil bound not only to GSK-3beta but also to beta-catenin, and the GSK-3beta-binding site of Axil was distinct from the beta-catenin-binding site. Furthermore, Axil enhanced GSK-3beta-dependent phosphorylation of beta-catenin. These results indicate that Axil negatively regulates the Wnt signaling pathway by mediating GSK-3beta-dependent phosphorylation of beta-catenin, thereby inhibiting axis formation.