
Expansions and Contractions in a Tandem Repeat Induced by Double-Strand Break Repair
Author(s) -
Frédéric Pâques,
Wai-Ying Leung,
James E. Haber
Publication year - 1998
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.18.4.2045
Subject(s) - biology , tandem exon duplication , tandem repeat , tandem , genetics , crossover , gene duplication , gene , computer science , genome , materials science , artificial intelligence , composite material
Repair of a double-strand break (DSB) in yeast can induce very frequent expansions and contractions in a tandem array of 375-bp repeats. These results strongly suggest that DSB repair can be a major source of amplification of tandemly repeated sequences. Most of the DSB repair events are not associated with crossover. Rearrangements appear in 50% of these repaired recipient molecules. In contrast, the donor template nearly always remains unchanged. Among the rare crossover events, similar rearrangements are found. These results cannot readily be explained by the gap repair model of Szostak et al. (J. W. Szostak, T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl, Cell 33:25–35, 1983) but can be explained by synthesis-dependent strand annealing (SDSA) models that allow for crossover. Support for SDSA models is provided by a demonstration that a single DSB repair event can use two donor templates located on two different chromosomes.