z-logo
open-access-imgOpen Access
Activation of Protein Kinase C Triggers Its Ubiquitination and Degradation
Author(s) -
Zhimin Lu,
David Liu,
Armand Hornia,
Wayne Devonish,
Michele Pagano,
David A. Foster
Publication year - 1998
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.18.2.839
Subject(s) - protein kinase c , diacylglycerol kinase , proteasome , ubiquitin , biology , activator (genetics) , tetradecanoylphorbol acetate , ubiquitin ligase , microbiology and biotechnology , phorbol , f box protein , signal transduction , biochemistry , receptor , gene
Treatment of cells with tumor-promoting phorbol esters results in the activation but then depletion of phorbol ester-responsive protein kinase C (PKC) isoforms. The ubiquitin-proteasome pathway has been implicated in regulating the levels of many cellular proteins, including those involved in cell cycle control. We report here that in 3Y1 rat fibroblasts, proteasome inhibitors prevent the depletion of PKC isoforms α, δ, and ɛ in response to the tumor-promoting phorbol ester 12-O -tetradecanoylphorbol-13-acetate (TPA). Proteasome inhibitors also blocked the tumor-promoting effects of TPA on 3Y1 cells overexpressing c-Src, which results from the depletion of PKC δ. Consistent with the involvement of the ubiquitin-proteasome pathway in the degradation of PKC isoforms, ubiquitinated PKC α, δ, and ɛ were detected within 30 min of TPA treatment. Diacylglycerol, the physiological activator of PKC, also stimulated ubiquitination and degradation of PKC, suggesting that ubiquitination is a physiological response to PKC activation. Compounds that inhibit activation of PKC prevented both TPA- and diacylglycerol-induced PKC depletion and ubiquitination. Moreover, a kinase-dead ATP-binding mutant of PKC α could not be depleted by TPA treatment. These data are consistent with a suicide model whereby activation of PKC triggers its own degradation via the ubiquitin-proteasome pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here