z-logo
open-access-imgOpen Access
Identification of Downstream-Initiated c-Myc Proteins Which Are Dominant-Negative Inhibitors of Transactivation by Full-Length c-Myc Proteins
Author(s) -
Gerald D. Spotts,
Sadhna V. Patel,
Qiurong Xiao,
Stephan Hann
Publication year - 1997
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.17.3.1459
Subject(s) - transactivation , biology , proto oncogene proteins c myc , downstream (manufacturing) , identification (biology) , dna binding protein , microbiology and biotechnology , n myc , genetics , transcription factor , gene , cell culture , ganglioneuroma , neuroblastoma , operations management , botany , economics
The c-myc gene has been implicated in multiple cellular processes including proliferation, differentiation, and apoptosis. In addition to the full-length c-Myc 1 and 2 proteins, we have found that human, murine, and avian cells express smaller c-Myc proteins arising from translational initiation at conserved downstream AUG codons. These c-Myc short (c-Myc S) proteins lack most of the N-terminal transactivation domain but retain the C-terminal protein dimerization and DNA binding domains. As with full-length c-Myc proteins, the c-Myc S proteins appear to be localized to the nucleus, are relatively unstable, and are phosphorylated. Significant levels of c-Myc S, often approaching the levels of full-length c-Myc, are transiently observed during the rapid growth phase of several different types of cells. Optimization of the upstream initiation codons resulted in greatly reduced synthesis of the c-Myc S proteins, suggesting that a "leaky scanning" mechanism leads to the translation of these proteins. In some hematopoietic tumor cell lines having altered c-myc genes, the c-Myc S proteins are constitutively expressed at levels equivalent to that of full-length c-Myc. As predicted, the c-Myc S proteins are unable to activate transcription and inhibited transactivation by full-length c-Myc proteins, suggesting a dominant-negative inhibitory function. While these transcriptional inhibitors would not be expected to function as full-length c-Myc, the occurrence of tumors which express constitutive high levels of c-Myc S and their transient synthesis during rapid cell growth suggest that these proteins do not interfere with the growth-promoting functions of full-length c-Myc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom